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Abstract

Frames (and more general beam systems) subjected to monotonic loading are modelled by conventional finite el-

ements with the traditional assumption of possible plastic deformations concentrated in pre-selected ‘‘critical sections’’.

The inelastic behaviour of these beam sections, i.e. the development of ‘‘plastic hinges’’, is described by piece-wise-linear

constitutive models allowing for hardening and/or softening, in terms of generalized stresses and conjugate kinematic

variables.

The following topics are discussed: step-by-step analysis methods, both ‘‘exact’’ and stepwise holonomic; path bi-

furcations and overall stability; limit and deformation analyses combined, as an optimization problem under com-

plementarity constraints apt to compute the safety factor (with respect to global or local failures); numerical tests of

nonconventional algorithms by means of simple representative applications.

The objective of the paper is to provide a unified methodology and to propose novel procedures for inelastic analyses

of frames up to failure, in the light of recent results in mathematical programming, particularly on complementarity

theory.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

An abundant literature nowadays provides, especially to structural engineers dealing with common
structures such as frames and beam systems, limit-state and inelastic analysis methods intended to achieve a

compromise between the conflicting requirements of sizmplicity and realism of results (see e.g. Massonet

and Save, 1978; Kaliszky, 1989; Jir�aasek and Ba�zzant, 2002). A contribution in this direction is the objective

of this paper: it presents a methodology which, in a sense, unifies direct limit and time-stepping analyses

and is motivated and characterized by the preliminary surveying remarks outlined below.
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(a) The traditional idealization of ‘‘plastic hinges’’ is herein preserved, namely possible plastic defor-

mations (not necessarily flexural only) are confined to ‘‘critical sections’’, located between adjacent con-

ventional finite elements which model elastic beams. Softening behaviour in bending is exhibited by steel

beams susceptible to flexural plastic deformations and/or local buckling (see e.g. Kim and Reid, 2001) and
typically by most reinforced concrete beams (see e.g. Jir�aasek and Ba�zzant, 2002). In bending tests up to

failure of over-reinforced concrete beams the moment peak is soon followed by a sloping down, softening

branch in the moment-curvature plot; such branch is delayed after a more or less extended horizontal stage

of relatively ductile behaviour in bending tests on under-reinforced beams (susceptible to idealizations

visualized in Fig. 3). In the presence of softening, localization of inelastic flexural deformation to cross-

sections (i.e. singularity of curvature giving rise to relative rotation between adjacent sections) is a fairly

realistic traditional idealization, quite acceptable to structural engineering purposes (see e.g. Maier, 1968;

Maier, 1971; Ba�zzant et al., 1987; Ba�zzant and Jir�aasek, 1996; Jir�aasek, 1997; Bolzon and Tin-Loi, 1999;
Ba�zzant, 2001; Jir�aasek and Ba�zzant, 2002). However, such idealization is not essential and might be relaxed in

favour of ‘‘spread plasticity’’ models in the context of nonlocal (e.g. strain-gradient) plasticity for ‘‘regu-

larization’’ (see e.g. Avery and Mahendran, 2000; Royer-Carfagni, 2001; Yang et al., 2002) by preserving

essential features of most present developments.

(b) The behaviour of the critical sections (e.g. in terms of bending moment versus rotation, or in presence

of moment versus axial force interaction) is described herein by a rigid-plastic or elastic–plastic hardening

and/or softening models which are ‘‘piece-wise-linear’’ (PWL). This means that the yield functions (and

plastic potentials, if distinct from them) are linear, both in the static generalized variables and in the ‘‘plastic
multipliers’’, which act as internal variables in cases of (linear) hardening or softening. Constitutive PWL

models are adopted in structural plasticity since a long time (see e.g. Maier, 1970, 1976; Capurso, 1971;

Hodge, 1977; Tin-Loi, 1990; Olsen, 1998); clearly, the perfectly plastic flexural ‘‘hinge’’ of classical limit

analysis is a very special case of PWL models. An analytical PWL representation can be given, quite ac-

curately, to the elastic-locking behaviour implied e.g. by unilateral contact in joints and, in particular, in

semirigid joints of steel frames (Corradi and Maier, 1969; Gawecki and Janinska, 1995). Also cohesive

crack and interface models have been formulated in PWL format (Bolzon et al., 1995; Maier and Comi,

2000; Cocchetti et al., 2002). The PWL nature of the assumed constitutive models is essential to the present
purposes, because it entails (as it will be shown in this paper) that a single mathematical construct, namely

the linear complementarity problem (LCP), acquires a recurrent and central role in a variety of approaches

and solution methods (even in the presence of geometric effects, provided that they are captured by geo-

metric stiffness matrices, in the spirit of a ‘‘second order theory’’). Whereas complementarity problems and

their frequent involvement in elastoplasticity theory have been studied since many years (see e.g. Maier,

1970; Cohn and Maier, 1979; Lloyd Smith, 1990; Wakefield and Tin-Loi, 1990; Giambanco, 1999), some

recent and promising mathematical developments considered herein turn out not to have been fully ex-

ploited so far in structural analysis, to the writers� knowledge.
(c) As a consequence of the PWL models for local nonlinear behaviour, the response of a frame structure

to external actions varying proportionally (or stepwise proportionally) can be computed ‘‘exactly’’ (to

within the approximations implied by the local models and by the overall discretization modelling) as it will

be discussed herein. In the presence of softening, exact time integration may be endowed with provisions

apt to capture possible branching of ‘‘equilibrium paths’’ and overall instability thresholds (see e.g. Ba�zzant,
2001; Ba�zzant and Cedolin, 1991; Biolzi and Labuz, 1993; Bolzon et al., 1997; Franchi et al., 1998; Maier

et al., 1973).

(d) Under external actions monotonically increasing proportionally by a load factor (a frequent as-
sumption in engineering practice), an elastic–plastic structure often exhibits negligible ‘‘local unloadings’’.

Therefore, it is often practically reasonable to rule out a priori all manifestations of irreversibility by as-

suming path-independent constitutive models for plasticity (‘‘holonomy’’, ‘‘deformation theory’’), see e.g.

Cohn and Maier (1979); Griffin et al. (1988); Tin-Loi and Wong (1989). With PWL models the transition
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from nonholonomic (i.e. path-dependent, irreversible) to holonomic descriptions of nonlinear sectional

behaviours will be shown to be straightforward and to preserve the centrality of the Linear Complemen-

tarity Problem (LCP) in the analytical formulations.

(e) The above holonomy assumption permits to formulate a ‘‘combination of limit and deformation
analysis’’ (CLDA). As shown in what follows, this means maximization of the live load amplifier under

equilibrium, compatibility, constitutive models and deformation constraints, simultaneously. The resulting

maximum represents the safety factor with respect to either plastic collapse or local failure or unservice-

ability or onset of overall instability, alternatively. Thus the limitations of classical limit analysis are

overcome, at the price of the complexity of a load factor maximization under additional nonlinear, non-

convex and nonsmooth constraints. The CLDA in the above sense was originally proposed under the re-

strictive assumption of Drucker�s constitutive stability and by use of linear programming (LP) ‘‘Simplex’’

method with the ad hoc ‘‘restricted basis’’ innovation (cf. Maier et al., 1979). Here, a CLDA is proposed
which allows for softening instability and makes recourse to mathematical concepts and algorithms mostly

developed in the last few years, namely ‘‘mathematical programming under equilibrium constraints’’

(MPEC) in nonsmooth nonconvex mechanics, see e.g. Luo et al. (1996); Mistakidis and Stavroulakis

(1998); Gao et al. (2001).

Rooted in consolidated areas of structural plasticity as shown by the preceding remarks, the study ex-

pounded in this paper contains the following contributions to inelastic frame analysis: analytical, LCP-

based representations of piece-wise-linearized relationships between static and kinematic generalized

variables of beam cross-sections also in the presence of softening behaviour (Sections 2 and 8.1); ‘‘exact
time-integration’’ method and step-wise and fully holonomic analyses allowing for possible bifurcations

and overall instability due to softening, all resting on the unifying basis of LCP (Sections 4 and 5); com-

bined limit and deformation analysis also in the presence of softening (Section 6); brief comments on

computational aspects, with special reference to concepts and algorithms recently devised in the mathe-

matical programming community (Section 7). A simple illustrative example is discussed in Section 8 in

order to further clarify mechanical and computational consequences of softening hinges and in the light of

the present results. Possible extensions of the results achieved in the paper are concisely pointed out in the

conclusive Section 9.
Matrix notation is adopted throughout. Matrices and vectors are represented by bold-face characters.

Transposition is indicated by superscript T. A dot marks rate, i.e. derivative with respect to ordering, not

necessarily physical, time t. Vector inequalities apply componentwise.
2. Piece-wise-linear models for plastic hinge behaviour

2.1. General formulation

According to a traditional modelling in civil engineering, possible inelastic deformations in beams and

frames are confined to pre-selected ‘‘critical cross-sections’’. Vectors Q and q will gather in what follows the
sectional stress resultants (generalized variables) and, respectively, the corresponding (virtual work con-

jugate) kinematic variables consistent with the adopted structural model.

In the usual two-dimensional (2D) interpretations of building frames the generalized stresses gathered in

vector Q are the bending moment and the axial force (the ‘‘interaction’’ between them being described by

yield limit curves referred to in codes of practice); the generalized strains in vector q consist of relative

rotation (with respect to a principal centroidal axis in the section) and axial elongation (discontinuity of

displacement along centroidal axis of the beam). When the effects of axial force are negligible, as frequently

in practice especially for horizontal beams, the ‘‘plastic hinge’’ idealization is arrived at, characterized
merely by a moment–rotation relationship like those depicted in Fig. 1, including the classical special case
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of the ‘‘perfectly-plastic’’ hinge (Fig. 1a). A PWL model describing interaction between moment and axial

force is schematically shown in Fig. 2.

For three-dimensional (3D) beam systems and frames, ‘‘plastic hinge’’ modelling may deal with axial

force, two bending moments, or two bending moments and one torque and with corresponding (work
conjugate) generalized strains. Illustrative special cases and the relevant detailed mathematical models are

presented in Section 8.1.

A general formulation of PWL elastic–plastic models, relating in time t (generalized) strain histories q to

(generalized) stress histories Q in a critical section, according to the above idealizations reads (see e.g.

Maier, 1970; Cohn and Maier, 1979; Lloyd Smith, 1990):
Fig. 1

(b) a m
q ¼ eþ p; e ¼ E�1Q; p ¼ Vk ð1Þ
u ¼ NTQ�Hk� Y6 0; _kkP 0; uT _kk ¼ 0 ð2Þ
Eq. (1) split the strain vector q into an elastic addend e (unless a rigid-plastic model, e ¼ 0, is adopted) and a
plastic one p, and relate the former to the stress vector through an elastic stiffness matrix E, the latter to the

vector of plastic multipliers through matrix V, the columns of which can be interpreted as gradients of

linear (or linearized) plastic potentials (one for each, ith, yield mode, i ¼ 1; . . . ; y). Vector u collects the y
linear, or linearized, yield functions (one for each yield mode i), the Q-gradient of which are columns of

matrix N. Matrix H is the ‘‘hardening matrix’’. The constant vector Y collects ‘‘yield limits’’, since the ith
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Fig. 2. PWL plastic hinge model with interaction between bending moment and axial force.
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component of it represents the original distance of the ith yield plane ði ¼ 1; . . . ; yÞ from the origin in the

space of generalized stresses, after a normalization which makes all columns in matrix N to become unit

vectors in space Q (the same is herein assumed for matrix V). The y-vector k gathers the ‘‘plastic multi-

pliers’’. It is worth noting that in the above PWL formulation the (time-integrated) plastic multipliers k
acquire the role of internal variables; in fact, they govern, through Eq. (2a), the changes of the current

‘‘elastic domain’’, i.e. the polyhedron defined in the Q-space by the linear inequalities (2a). Vector k rep-

resents the only memory of the past dissipation history.

The entries of the (symmetric positive-definite) elastic stiffness matrix E degenerate to infinite in rigid-

plastic models ðe ¼ 0Þ, which are physically suitable to plastic hinges and interface models. Sometimes the

entries of E are given fictitious values for computational convenience; in other situations they are meant to

interpret the spreading of elastic deformations which accompany the inelastic ones, but, like them, are

concentrated in a section as a simplifying idealization which is fairly realistic in the presence of softening
behaviour.

When matrix E is finite, the inverse formulation of the PWL general model, governing the generalized

stress response QðtÞ to an assigned strain path qðtÞ, can be easily seen to materialize in the relationships:
u ¼ NTEq� Kk� Y6 0 _kkP 0 uT _kk ¼ 0 ð3Þ

Q ¼ Eq� EVk ð4Þ
having set:
K � HþNTEV ð5Þ
In both the direct and the inverse PWL model, all nonlinearities are confined to Eqs. (2) and (3), respec-

tively. When the rate vector _kkðtÞ and, hence, kðtÞ are computed through them, the response qðtÞ or QðtÞ
results from explicit linear transforms (1) or (4), respectively.

In terms of rates (i.e. of infinitesimal increments) starting from a state fQ; kg where only a subset of yield
planes is active (the relevant vectors are marked by a prime), Eqs. (1) and (2) and (3)–(5) generate

straightforwardly the following direct and inverse flow rules, respectively:
_uu0 ¼ N0T _QQ�H0 _kk0
6 0; _kk0 P 0; _uu0T _kk0 ¼ 0 ð6Þ

_uu0 ¼ N0TE _qq� K0 _kk0
6 0; _kk0 P 0; _uu0T _kk0 ¼ 0 ð7Þ
2.1.1. Remarks

The following circumstances are worth noting on the preceding formulation of generalized plastic hinge

models.

(a) The main peculiar feature of PWL models is the circumstance that the yield surfaces in the Q-space

are ‘‘yield planes’’, which may merely translate at yielding and ‘‘interact’’ (in the sense that the ‘‘activation’’

of one can induce others to translate). Clearly, these motions and interactions are governed by vector k
through the hardening matrix H. In fact, if the gradients of yield functions u (i.e. the outward normals to
the yield planes) contained as columns in matrix N are normalized, then the current distance of the yield

plane from the origin reads (Hr denotes the rth row of H):
Yr þHrk ¼ Y 0
r ; ðr ¼ 1; . . . ; yÞ ð8Þ
If matrix H (of order y) is diagonal, there is no interaction among yield planes (‘‘Koiter�s rule’’). In classical
plasticity, kinematic hardening and isotropic hardening mean rigid-body translation and, respectively,

shape-preserving homothetic expansion of the entire yield locus. In the PWL context, such restrictive
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assumptions could easily be seen to reduce drastically (to a single one, say k and h, respectively) the

available hardening/softening parameters and to imply the following specialization of matrix H, respec-

tively: H ¼ kNTN, H ¼ hYvT. In the latter (isotropic) hardening rule, where v is an arbitrary y-vector, two
special cases are worth noting: v ¼ fY1; Y2; . . . ; YygT and v ¼ fY �1

1 ; Y �1
2 ; . . . ; Y �1

y gT. The former case implies
the symmetry of the hardening matrixH and, for each yield mode i, a self-hardening modulus Hii ¼ hY 2

i ; the

latter choice generally disrupts the symmetry of H, but confers equal self-hardening modulus for all modes.

(b) Convexity of all current ‘‘elastic domains’’ in the Q-space, implied by Drucker�s postulate, is obvi-
ously intrinsic in any PWL approximation. Another implication, associativity (or ‘‘normality’’), means

N ¼ V and will be accepted in what follows. In order to evidence the meaning and the instabilizing effects of

the two possible violations of Drucker�s postulate in PWL models, namely nonassociativity ðN 6¼ VÞ and/or
softening (see Maier, 1967; Palmer et al., 1967), the second order work d2P is represented here through easy

manipulations of Eq. (6), account taken of Eqs. (1):
d2P ¼ 1

2
dQTðdqÞdq ¼ dt2

2
½ _QQTE�1 _QQþ _kk0TH0 _kk0 þ _QQTðV�NÞ _kk0� ð9Þ
Usually plastic hinge models are rigid-plastic and, hence, the first addend on the r.h.s. in Eq. (9), i.e. the

(strictly convex) elastic strain energy, vanishes ðE�1 ¼ 0Þ. Associativity ðN ¼ VÞ implies that constitutive
instability (d2P < 0 for some perturbation) may occur only when H is nondefinite, namely with softening

behaviour, which may have the crucial mechanical and computational consequences to be dealt with later

herein. More specifically, when N ¼ V and E�1 ¼ 0, stability (in the sense of d2PP 0 for any dq) is

guaranteed by the hinge model in a given situation if and only if the hardening submatrix H0 concerning the

currently active yield modes is co-positive (i.e. if and only if _kk0TH0 _kk0 P 0 for any _kk0 P 0).
3. Discrete formulation of frame analysis in PWL elastoplasticity

Let n, c and y denote, respectively, the numbers of: critical sections; generalized stress components in

each one of them (c ¼ 1 in Fig. 1; c ¼ 2 in Fig. 2); yield modes considered in each of them (y ¼ 2, 4 in Figs.

1a and b, respectively). A detailed discussion of some representative models is postponed to Section 8.1.
Symbols Q and q (the latter with its elastic e, if any, and plastic p addends) will represent henceforth the

n c-vectors which gather all n c generalized stresses and strains, respectively, in the n critical sections en-

visaged by the overall structural model. Similarly, k and Y will denote the n y-vector of all plastic multi-

pliers and of all yield limits in the modelled structure, respectively. Consistently with this compact notation,

matrices N and V (assumed equal in the present paper) andH shall contain as diagonal blocks all their local

counterparts (considered in Section 2.1) formulated for all pre-selected critical cross-sections in the frame

model. Thus, Eqs. (2) and (1) are recovered and re-written here, but now with associativity ðV ¼ NÞ and
with the notational convention to analytically represent the idealized local inelastic behaviour in all the n
critical sections, simultaneously:
u ¼ NTQ�Hk� Y6 0; _kkP 0; uT _kk ¼ 0 ð10Þ

q ¼ Nkþ E�1Qþ qt ð11Þ
Vector qt quantifies possible deformations imposed as external actions in the critical sections; for brevity it

will be assumed qt ¼ 0 in what follows. The behaviour of beams (and of structural joints, if suitable) be-

tween critical sections is interpreted as linear elastic and is modelled in space by finite elements (FE) in

terms of ‘‘natural’’ (i.e. intrinsic, namely unaffected by rigid body motions) generalized (nodal) variables.
Covering the whole set of beam FEs before their assemblage and marking by stars the relevant compre-

hensive symbols we can write:
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Q� ¼ E�e�; e� ¼ q� � q�t ð12Þ
In Eq. (12b) the imposed generalized strains q�t , such as those due to thermal effects, will be ignored for

brevity in the sequel ðq�t ¼ 0Þ.
Let us denote by u the vector of all d.o.f. of the overall assembled FE model, account taken of the

ground-constraints supposed to be fixed. Marking by caps the symbols concerning both the inelastic critical
sections and the elastic FE, geometric compatibility and equilibrium of the structural model are expressed

by the following equations, respectively:
q̂q ¼ q

q�

� �
¼ C

C�

� �
u ¼ ĈCu ð13Þ

CT C�T
h i

Q

Q�

� �
¼ ĈCTQ̂Q ¼ F ð14Þ
In Eq. (14) FðtÞ represents the time-history input vector of nodal forces ‘‘equivalent’’ (in the sense of the

adopted FE modelling) to given loads acting on beams and on joints. As usual in practice, the unloaded

ðF ¼ 0Þ and unstressed ðQ̂Q ¼ 0Þ situation is assumed as initial condition.
Eqs. (10)–(14) (referred to henceforth as formulation A) constitute the relation set which governs the

elastic–plastic response to proportional loading of the FE-modelled frames with PWL models of the plastic

deformability confined to the n critical sections.

Two alternative, more compact formulations (B and C) of the above structural analysis problem are

derived below by trivial algebraic manipulations.

Let Eqs. (11) and (12a) be used to substitute generalized stresses Q̂Q in Eqs. (10) and (14) and the

compatibility Eq. (13) to substitute generalized strains q̂q; let matrix ÊE gather as its diagonal blocks the

block-diagonal elastic stiffness matrices E and E� of the not yet assembled constituents after FE modelling.
Thus, the governing set of relations becomes (formulation B):
u ¼ NTECu� Ak� Y ð15Þ

ŜSu� CTENk ¼ F ð16Þ

u6 0; _kkP 0; uT _kk ¼ 0 ð17Þ
having set:
A � HþNTEN; ŜS � ĈCTÊEĈC ð18Þ

Since the elastic stiffness matrix ŜS of the whole assembled and constrained FE model, is positive definite

(and symmetric), the displacements u can be substituted from Eq. (15) through Eq. (16). This leads to the

more compact formulation C:
u ¼ NTQe � Bk� Y6 0; _kkP 0; uT _kk ¼ 0 ð19Þ

where
Qe � ECŜS�1F ð20Þ

B ¼ H�NTZN; Z � ECŜS�1CTE� E ð21Þ
It is worth noting that formulation C can be arrived at from A by a more direct mechanical argument: in
Eq. (10a) the vectorQ of the actual generalized stresses in the n critical sections can be conceived as the sum

of the elastic stress responseQe to the given load FðtÞ and of the elastic self-equilibrated response Qs ¼ ZNk
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to the unknown plastic strains conceived as imposed strains, Z being an influence matrix of generalized self-

stresses in the critical sections due to generalized strains imposed there. It is easily recognized that the elastic

stress vector Qe identifies with the vector defined by Eq. (20); matrix �Z, Eq. (21b), turns out to be

symmetric, positive semidefinite.
4. ‘‘Exact’’ elastoplastic analysis, allowing for instability and bifurcation thresholds

4.1. Step-by-step method for ‘‘exact’’ solutions

In view of its mathematical peculiarities consequent to the adopted PWL constitutive models for the

selected critical sections, the nonlinear initial-value problem formulated in Section 3 can be numerically

solved by the procedure outlined in what follows.

The compact formulation C, Eqs. (19)–(21) will be considered below, but all considerations can be
straightforwardly transferred to formulations A or B.

The external actions will be conceived henceforth as the sum of dead loads FD generating a purely elastic

response Qe
D at t ¼ 0 (so that k ¼ 0 at t ¼ 0) and of live loads FL with consequent stresses Qe

L, both

proportionally amplified in time t by load factor lP 0:
F ¼ FD þ lFL; Qe ¼ Qe
D þ lQe

L ð22Þ
The time-independent (‘‘inviscid’’) property implied by the assumed elastic–plastic constitutive models for

the frame makes time t an ordinal, chronological variable (not necessarily the physical time) and permits to

identify t with the load factor l (and hence to set _ll ¼ 1), as long as this increases.

Barred symbols will denote quantities which have already been computed, at the beginning t of the
current nth step. Single and double primes will mark the subvectors in u and k (and consequently the

submatrices in N, H and B, Eq. (21)) which correspond to yield modes currently active ðu0 ¼ 0Þ and non

active ðu00 < 0Þ, respectively.
A peculiar strategy, called herein ‘‘exact’’, for solutions of the nonlinear initial-value problem (19)–(21),

can be outlined as follows.

(a) At the known state fln; kng, solve the following LCP in rates for given rate _QQe
L ¼ _llQe

L with _ll ¼ 1,

and, if no solution exists, solve it for _ll ¼ �1:
_uu0 ¼ N0TQe
L _ll� B0 _kk0

6 0; _kk0 P 0; _uu0T _kk0 ¼ 0 ð23Þ
Let _kk0
n be the (or a) solution of this first problem in rates, account taken that _kk

00
n ¼ 0.

(b) Noting that the LCP of Eq. (23) is linearly homogeneous in an amplifier Dt of both data and

variables, compute the value Dln such that some new yield plane is ‘‘activated’’, i.e. is reached at the load

factor ln þ Dln.
Dtn ¼ max
Dt

fDtju00
n þ ðN00TQe

L _ll� 00
B0 _kk0

nÞDt6 0g; Dln ¼ _llDtn ð24Þ
with self-evident meaning of the symbols; in particular:
00
B0 is the submatrix of B, Eqs. (21a), formed by the

intersection of its rows corresponding to u00 < 0, with its columns corresponding to u0 ¼ 0. Where the LCP

in rates (23) has no solution for _ll ¼ 1, a negative Dln characterizes a post-peak behaviour or, as an

alternative, elastic unloading.

(c) In view of the new active and inactive yield modes, re-arrange vectors and matrices by re-decom-
position into primed and double primed portions. Thereafter go to (a) and repeat the operative sequence (a)

and (b) starting from lnþ1 ¼ ln þ Dln, knþ1 ¼ kn þ _kknDtn.
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(d) Defining lM as the top load factor at the end of the proportional loading, if it is reached (it may be

unreachable), stop when Dl1 þ Dl2 þ � � � þ Dln þ � � � þ Dll P lM and, in the case of strict inequality, re-

duce the last substep Dll, so that the equality holds.

Summing up the results of steps, the history of plastic multipliers and, through Eq. (11) with E�1 ¼ 0, of
deformations in the critical sections due to the proportional loading lðtÞ can be reconstructed (reordering

of components is tacitly assumed for vectors k):
DkðlÞ ¼
_kk0
1

_kk00
1 ¼ 0

( )
Dt1 þ

_kk0
2

_kk00
2 ¼ 0

( )
Dt2 þ � � � ð25Þ
Vector kðlÞ defines through Eq. (16) the nodal displacement response uðlÞ and through (13) the strain

history, q̂qðlÞ, whence the generalized stress path Q�ðlÞ in beams follows through Eq. (12) and that in

critical sections through QS ¼ ZNk.

4.2. Remarks

(a) The denomination ‘‘exact’’ for the above time-integration procedure is intended to emphasize the fact

that it does not imply any approximation (besides, of course, round-off errors) additional to the ones

implicit in the PWL constitutive models at critical sections. On the contrary, customary procedures do
imply additional errors and are susceptible to instability even in the absence of softening (like for the

‘‘explicit’’ time integration) in the sense of lack of disturbance contractivity along the step sequence, see e.g.

Feij�ooo and Zouain (1988); Simo and Govindjee (1991); Comi et al. (1992); Kulkarni et al. (1995); Bely-

tschko et al. (2000); Zienkiewicz and Taylor (2000). Stability in this sense might be proven for the present

‘‘exact’’ strategy even in the presence of softening.

(b) The LCP in rates Eq. (23) is fully equivalent to the following quadratic programming (QP) problem:
min
_kk0

f _kk0TB0 _kk0 � _kk0TN0TQe
L _llg ¼ 0 ð26Þ
subject to : N0TQe
L _ll� B0 _kk0

6 0; _kk0 P 0 ð27Þ
where min ¼ 0 specifies that the minimization leads to a solution of the original LCP rate problem if, and

only if, the achieved minimum is zero.

The equivalence between problems (23) and (26)–(27) is almost self-evident. In fact, over the feasible

domain defined by the linear inequalities (23a,b), the scalar product � _uu0T _kk0 is nonnegative. This product

becomes the objective function (26) through the Eq. (23a) and vanishes for some vector _kk0 by reaching its

minimum under the constraints (27) if, and only if, vector _kk0 solves the LCP (23).

Usually, i.e. for general matricesH and, hence, B, the QP formulated by Eqs. (26) and (27) is not convex,

since its objective functionmaybe nonconvex.The present one, is a particular case of nonconvexoptimization,
a growing field in mathematics and mechanics, see e.g. Gao (1999); Mistakidis and Stavroulakis (1998).

(c) If applied to formulation A or B of the time-stepping PWL elastic–plastic analysis of frames, the

central repetitive role of LCP is preserved. In fact, the presence of free (sign unconstrained) variables and

linear equations does not alter the essential mathematical features, nor the solution processes. The number

of unknowns obviously increases, but, as a partial compensation, the inversion of the overall stiffness

matrix S is avoided since the influence matrix Z no longer needs be generated.

(d) Suppose that Drucker�s postulate holds and, hence, softening is ruled out. Then the hardening matrix

H is positive semidefinite, and so is B, since so is �Z by its very meaning and origin (in fact, the elastic
strain energy stored in the frame if generalized strains p were in the critical sections would amount to
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�pTZp=2). In this case the LCP, Eq. (23), can be interpreted as the Kuhn–Tucker optimality conditions of a

convex QP problem, fully equivalent to it. From this QP, its (still convex) dual QP can be generated

through well-consolidated mathematical programming concepts, see e.g. Cottle et al. (1992). Similar

statements hold for formulation B. This remark leads, for the special discrete frame models in point, to the
two pairs of dual extremum theorems which characterize by the linearly constrained minimum of a convex

quadratic functional the rate solution in Druckerian plasticity. One pair concerns the rate version of for-

mulation B, Eqs. (15)–(18), the other pair the condensed rate formulation, Eqs. (19)–(21), see e.g. Capurso

and Maier (1970). These two pairs are computer-oriented supplements to the pair of classical theorems due

to Greenberg and Prager–Hodge which imply unconstrained and convex but nonsmooth minimization. It is

worth noting that the above pairs of theorems in rates hold throughout the domain of plasticity stable in

Drucker�s sense, independently from PWL assumptions, see e.g. Lubliner (1990).

(e) As long as Drucker stability postulate is fulfilled at the constitutive level, the LCP in rates, Eq. (23), to
be solved at each step, is known to exhibit the following main properties: (i) in hardening plasticity there

always exists a single solution; (ii) in perfect plasticity ðH ¼ 0Þ there is either one solution or an infinite

number of solutions. In the latter case (ii) the solution multiplicity forms either a bounded set, which

mechanically means ‘‘pseudo-mechanism’’ (i.e. an infinity of bounded equilibrium configurations under the

same loads) or an unbounded one (a ‘‘feasible ray’’) which represents a collapse mechanism in the sense of

limit analysis and characterizes the current live load multiplier l as the safety factor. These properties can

be regarded as mechanical interpretations of consolidated mathematical features of LCP related to the

nature of its matrix, see e.g. Cottle et al. (1992).
In fact, matrix H and, hence, matrices A, Eq. (18a), and B, Eq. (21a), are positive-definite in the former

case (i) of hardening, positive-semidefinite in the latter case (ii) of perfect plasticity. Clearly, as a conse-

quence, their diagonal-block submatrices involved in the current LCP in rates, like Eq. (23), are positive

definite in case (i) and thus guarantee the existence and uniqueness of the rate solution; they may be positive

semidefinite in case (ii) and, hence, such guarantee fails.

4.3. On path branching and overall instability

In the presence of constitutive instability due to softening in the plastic hinges, the matrices H (and,

hence, A and B, Eqs. and (18a) and (21a), and their current submatrices as a consequence) are not nec-
essarily positive-semidefinite: they may be indefinite. Therefore, the LCP in rates, Eqs. (23), may have a

discrete or continuum multiplicity of solutions or no solution, see e.g. Cottle et al. (1992).

Mechanically, lack of solution to LCP (23) for _ll ¼ 1 characterizes a load peak. This peak, say l
^
, of the

load factor may be a local maximum, i.e. followed by a decrease and subsequent growth (e.g. due to a

nonsoftening stage following the softening one in plastic hinges). Alternatively, the load peak may be

‘‘global’’, namely the load factor l
^

represents the safety factor s with respect to the exhaustion of the

carrying capacity of the structure, generally lower than the hypothetical one with respect to plastic collapse

in perfect plasticity obtained by removing softening (i.e. by setting H ¼ 0) in the hinge models.
A discrete multiplicity of (nonproportional) solutions means ‘‘bifurcation’’, i.e. branching of the equi-

librium path followed by the structure along the assigned loading history, see e.g. Biolzi and Labuz (1993);

Franchi et al. (1998). The branch that ‘‘nature will choose’’ can be selected by thermodynamic criteria, see

e.g. Ba�zzant and Cedolin (1991). For the present category of structures, the second-order work can be

expressed as follows (to within the factor dt2=2):
_FFT
L _uu ¼ _QQ�T _qq� þ _QQT _qq ¼ _uuTS� _uuþ _QQTE�1 _QQþ _kk0TH0 _kk0 ð28Þ
where _FFL is the given vector of live load rates (here _FFL ¼ _llFL) and _uu the displacement rate response to it.

On the r.h.s. (internal work) of the virtual work equation (28a) the former addend (starred symbols)
concerns the elastic beams and is expressed in (28b) as a quadratic form associated to the relevant
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submatrix S� ¼ C�TE�C� of the stiffness matrix ŜS , Eq. (18b); the latter addend concerns plastic hinges

active in the infinitesimal loading step _FFLdt (starting from the known current situation l, k, Q) and is

expressed in Eq. (28b) according to Eq. (9), with V ¼ N since normality was assumed in the present

context. The usual denial of elasticity in the plastic hinge models ðE�1 ¼ 0Þ removes the second of the
three addends in Eq. (28). Vectors _QQ and _kk are related to each other as parts of the solution to the LCP

(23) in the overall ‘‘exact’’ analysis for given _ll. Clearly, if various rate solutions within the multiplicity

share the maximum of work (28), then only imperfections decide which one would materialize in nature.

Formally similar considerations apply to quasi-brittle fracture simulated by cohesive crack models

(Bolzon et al., 1997).

The customary stability criterion under conservative load can be stated as follows (see e.g. Ba�zzant and
Cedolin, 1991): a system is (strictly) stable if and only if, for all infinitesimal admissible kinematic dis-

turbances, the changes of external actions needed to preserve equilibrium perform positive (second order)
work.

In order to apply this notion to the class of the frame models in point endowed with the n critical sections
modelled as rigid-plastic ðE�1 ¼ 0Þ and associative ðN ¼ VÞ, we can use Eq. (28) to express the global

second-order internal work d2P, which is now understood as a function of the virtual disturbance dis-

placement vector _uudt:
2d2P ¼ dQ̂QTðduÞdq̂qðduÞ ¼ ð _uuTS� _uuÞdt2 þ _kk0Tð _uuÞH0 _kk0ð _uuÞdt2 ð29Þ
An alternative, more useful expression of d2P can be obtained by the following path of reasoning (formally

similar to the one adopted for fracture analysis in Cen and Maier (1992)). The generic virtual configuration

change _uu is conceived as generated in two stages: (a) the plastic deformations _pp ¼ N _kk are imposed in the

critical sections with the consequent configuration change _uup and stress increments
_̂
QQ̂QQ

p
; (b) a ‘‘comple-

mentary’’, purely elastic process _uuc ¼ _uu� _uup, endowed, by its definition, with the kinematic property

Cð _uu� _uupÞ ¼ _qqc ¼ 0 in the hinges.

Since stresses
_̂
QQ̂QQ

p
generated at stage (a) are self-equilibrated and beam strains _qq�c ¼ _ee�c at stage (b) are

compatible, i.e. _qq�c ¼ Cð _uu� _uupÞ, the mutual (or ‘‘indirect’’) work,
_̂
QQ̂QQ

pT
_qq�c ¼ 0, of the two stages is zero by

the virtual work principle. Therefore, the total work at the end of the two stages amounts to:
2d2P ¼ ð _kk0TH0 _kk0 � _kk0TN0TZN0 _kk0 þ _ee�cTE� _ee�cÞdt2 ð30Þ
In fact, the work performed in (a) includes the first addend in (30) representing the contribution of the

hinges, and the second addend corresponding to the total elastic energy stored in the beams; the third

addend is additional elastic energy in the beams due to stage (b). This stage is optional, in the sense that the

hypothetical external agency which checks overall stability of the frame may operate through _pp0 only. A
kinematic disturbance with _uuc ¼ 0 belongs to the set of virtual disturbances and exhibits minimum second

order work for equal disturbances governed by _pp0 in active plastic hinges.

As a consequence of Eq. (30) and of the preceding remarks on it, the following operative criteria can be

stated for overall stability.

The considered frame is stable in a known situation of its loading history if, and only if, matrix B0 is

copositive, namely iff:
_kk0TB0 _kk0 ¼ _kk0TðH0 �N0TZN0Þ _kk0 P 0 8 _kk0 P 0 ð31Þ
The copositiveness of the current hardening matrix H0 turns out to be sufficient, not necessary, for overall

stability. Of course, the traditional distinction between loose and strict stability (the latter characterized by
strict inequalities) may be computationally useful in the present context as well.
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5. Stepwise holonomic and fully holonomic analysis

The exact integration which precedes (Section 4.1) exhibits the peculiar feature that the number of

substeps Dli ði ¼ 1; 2; . . . ; lÞ within each given loading interval 06 l6lM cannot be chosen a priori, but
depends on the adopted model and on the given loading path. Clearly, this fact becomes computationally

disadvantageous when numerous yield modes can be activated in many critical sections simultaneously and

at small intervals.

In order to avoid possibly drastic reduction of substep amplitudes Dli, let us assume that the path-

dependence does not hold within each step; in other terms, the intrinsic irreversibility of the plastic hinge

model is accounted for only in updating the internal variables at the transition from step to step. Such

‘‘stepwise holonomic’’ interpretation of the evolution of a dissipative system (an interpretation at the basis

of practically all time-integration schemes in computational plasticity), if applied to the PWL in point, leads
to a step-governing relationship once again formulated in a LCP format (Maier, 1970; De Donato and

Maier, 1972; Franchi and Genna, 1991).

Starting from a state characterized by a known vector fln; kng (barred symbols for known variables),

consider the LCP concerning the given finite increment Dln and the unknowns unþ1;Dkn:
unþ1 ¼ un þ Dun ¼ un þNTQe
LDln � BDkn 6 0; Dkn P 0 ð32Þ

uT
nþ1Dkn ¼ 0 ð33Þ
where
un ¼ NTQe
D þNTQe

Lln � Bkn � Y ð34Þ
denoting by Qe
D and Qe

L the vectors of all generalized stresses in all critical sections due to dead and refe-

rence live loads, respectively, in a hypothetically linear-elastic structural response to them.

Note that now, in principle, all yield modes contained in the frame model are involved, not only the

active ones (therefore primes on symbols of Section 4 disappear).

Full equivalence can be noted between LCP (32)–(33) and the following generally nonconvex QP

problem:
min
Dkn

f�uT
nDkn � DkT

nN
TQe

LDln þ DkT
nBDkng ¼ 0 ð35Þ

subject to : un þNTQe
LDln � BDkn 6 0; Dkn P 0 ð36Þ
Clearly, if the increments are regarded as infinitesimal ðDln ! _lldtÞ, the LCP (32)–(33) formally reduces to

its counterpart in rates Eq. (23) and the QP (35)–(36) to Eqs. (26) and (27).

When the incremental plastic multiplier vector Dkn has been obtained by solving the LCP (32)–(33) or

the equivalent QP problem, the following closed-form expressions, derived from Eqs. (11), (13) and (16),
provide the increments of other variables (generalized strains and stresses in the critical sections and in the

beam FEs and the nodal displacements throughout the frame model):
pnþ1 ¼ Nknþ1; unþ1 ¼ ŜS�1ðFD þ FLlnþ1Þ þ ŜS�1CTENknþ1 ð37Þ

q̂qnþ1 ¼ ĈCunþ1; Q�
nþ1 ¼ E�e�nþ1; Qnþ1 ¼ Qe

D þQe
Llnþ1 þ Zpnþ1 ð38Þ
Let us consider now as starting situation the original unloaded state, which implies un ¼ u0 < 0, kn ¼ 0,

ln ¼ 0. Then Eqs. (32)–(33) are specialized to the following LCP formulation of the single-step, fully

holonomic (path-independent, reversible, nonlinear elastic) analysis of the modelled frame under given live
load factor l:
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u ¼ NTðQe
D þQe

LlÞ � Bk� Y6 0; kP 0; uTk ¼ 0 ð39Þ
Obviously, an equivalent QP formulation results from a similar specialization of Eqs. (35)–(36).

The meaning and implications of the above formulations in finite increments are clarified by the fol-

lowing remarks.

(a) The response of an elastic–plastic structure to a loading process over a time interval, say ½tn; tnþ1�, is
said to exhibit ‘‘regularly progressive yielding’’ (RPY) when every yield mode r, if it is active at an instant in

the interval, is not subsequently unstressed (i.e. is not subjected to ‘‘local unloading’’ _uur < 0). Formally,

with the present notation, RPY means that if _kkrðt�Þ > 0 (and, hence, _uur ¼ 0) at t�ðtn 6 t� 6 tnþ1Þ, then
urðtÞ ¼ 0 at any tP t�, with tn 6 t� 6 t6 tnþ1, r ¼ 1; . . . ; y (y being the number of all yield modes envisaged in
all critical sections in the frame model).

It is easily seen that if RPY in the above sense holds for a finite increment process under Dln, then the

complementarity relation Eq. (33) is fulfilled for that process. Clearly, the converse is not necessarily true.

Therefore, in the case of RPY the solution (or solutions) to the LCP (32)–(33) turns out to be ‘‘exact’’ (i.e.

coincides with that provided by the procedure devised in Section 4). If RPY is only assumed but does not

occur (i.e. some yield modes are unstressed), Eqs. (32) and (33) represent an approximate interpretation of

the actual step process. Such interpretation is called here ‘‘stepwise holonomic’’, i.e. reversible (or path-

independent) in the step Dtn ¼ tnþ1 � tn, because Eqs. (32) and (33) turn out to be verified (i.e. obtained by
integrations over Dtn) even if _kkr is not sign-constrained but is still complementary to ur at any time t during
the step.

(b) Now let the further hypothesis of ‘‘no new yielding’’ over Dtn be assumed for the (undefined) actual

path over Dtn, formally: if urn < 0 (at tn), then _kkrðtÞ ¼ 0 at any instant t, with tn 6 t6 tnþ1 for all yield modes

r ¼ 1; . . . ; y. Then uT
nDkn ¼ 0, and, hence, Eqs. (32) and (33) generate the following LCP in finite incre-

ments only, involving only the yield modes which are active ðurn ¼ 0Þ at the onset of the loading step (this

reduction of the problem size is pointed out again by means of primes on the relevant symbols):
Du0
n ¼ N0TQe

LDln � B0Dk0
n 6 0; Dk0

n P 0; Du0T
n Dk

0
n ¼ 0 ð40Þ
(c) In computational plasticity time-stepping analyses of structures are generally stepwise holonomic,

carried out by finite difference schemes resting on the following assumptions: the constitutive law is en-
forced only at some instant tq ¼ tn þ qDtn, 06 q6 1; all variables vary linearly over the time interval Dtn. If
these hypotheses are applied to the governing relations (19) based on PWL models for the critical sections,

the following LCP in finite increments is obtained:
un þ qDun ¼ un þ qðNTQe
LDln � BDknÞ6 0; Dkn P 0; ðun þ qDunÞ

TDkn ¼ 0 ð41Þ
The above formulation for q ¼ 1, i.e. specialized to the backward difference scheme, is seen to coincide with

the stepwise holonomic formulation Eqs. (32) and (33). The further ‘‘no new yielding’’ hypothesis leading to

formulation (40), see preceding remark (b), makes the midpoint instant q immaterial.

(d) The above circumstances noted at (a)–(c) are noteworthy consequences of the PWL approximation,

which makes the gradients of the yield functions ur (and of plastic potential wr if different from ur) constant
and independent from q. It is worth remembering that the backward difference scheme is often adopted in

view of its computationally favourable properties: e.g., in dynamics algorithmic stability (in the sense of

contractivity of disturbances along the step sequence) turns out to be unconditional for stable constitutive

models, conditional (i.e. for Dtn below a suitable softening-related threshold) in the presence of material

instability, see e.g. Comi et al. (1992).

(e) So far in this Section the set of relationships governing the overall behaviour of the modelled frame

was considered in its compact formulation (19)–(21) which permits to cast in the LCP format several

variants of time-stepping analysis. However, parallel developments, omitted here for brevity, might start
from the less compact equivalent formulation (15)–(18) and would lead to ‘‘mixed’’ LCPs, i.e. to problems
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containing both variables which are complementary (sign-constrained and orthogonal vectors) and vari-

ables which are not so, see e.g. Cottle et al. (1992). For instance, the mixed LCP which is alternative to LCP

(40) and consistent with Eqs. (15)–(18), reads:
Dun ¼ NTECDun � ADkn 6 0; Dkn P 0; DuT
nDkn ¼ 0 ð42Þ

ŜSDun � CTENDkn ¼ FLDln ð43Þ

An equivalent (generally nonconvex) QP problem can be derived from the above mixed LCP simply by

minimizing �DuTDk to zero with respect to Dun and Dkn constrained by the inequalities Eqs. (42a) and

(42b) and by Eq. (43).
(f) When Drucker�s postulate holds for the PWL model of critical sections (no softening), what was

stated in Section 4 for rates can be formally repeated here for finite step problems: matrices H and B

become positive (semi)definite and, hence, the LCPs of this Section can be interpreted as Kuhn–Tucker

conditions (necessary and sufficient for optimality) of a pair of dual convex QP problems. The conse-

quences are important and beneficial in theoretical terms (extremum theorems in pairs) and computa-

tionally (applicability of traditional algorithms).
6. Generalized limit analysis with deformation control as a nonconvex, nonsmooth optimization

In many engineering situations classical limit analysis, based on rigid-perfectly-plastic constitutive re-
lations, still represents an effective methodology apt to provide essential information to structural design

purposes. Computationally, it requires the solution of an inequality-constrained optimization problem,

specifically: a convex nonlinear mathematical programming or, for the PWL constitutive models, a LP

problem (see e.g. Cohn and Maier, 1979; Maier et al., 2000; Jir�aasek and Ba�zzant, 2002).
In the present context and notation, assumingH ¼ 0 in Eq. (10a), the following couple of LP problems is

generated by the statical and kinematical approach to limit analysis, respectively, leading to the safety

factor sLA with respect to plastic collapse:
sLA ¼ max
l;Q̂Q

fljĈCTQ̂Q ¼ FLlþ FD; NTQ̂Q6Yg ð44Þ

sLA ¼ min
u;k

fYTk� FT
DujFT

Lu ¼ 1; Nk ¼ Cu; kP 0g ð45Þ
The (not necessarily unique) optimal vector of LP (44) and that of LP (45) define a stress state at collapse

and a collapse mechanism, respectively.

The LP problems (44) and (45) could easily be shown to be dual in the sense of mathematical optimi-

zation theory (see e.g. Cohn and Maier, 1979; Gao, 1999).

The basic assumptions of traditional limit analysis may become unacceptable in a number of real-life

technical problems. The main weaknesses are as follows: softening and nonassociativity are ruled out by
constitutive stability in Drucker sense as underlying hypothesis; unconservative assessments of safety

margins may arise due to neglected limitations in constitutive ductility and/or geometric effects of defor-

mations on equilibrium, see e.g. Kaliszky (1996).

Conventional step-by-step methods of inelastic analysis, at present implemented in most commercial

finite element computer codes, may avoid the above disadvantages of limit analysis. However, step-by-step

analyses provide more information than needed in most real-life engineering situations and are in general

computationally more laborious than limit analysis, especially when repeated parametric studies are re-

quired by preliminary structural design. In the presence of physical (softening) and geometrical instabilizing
effects, time-marching procedures require special provisions, such as step reduction, to guarantee con-

tractivity of disturbances in time.
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Suppose that the frame response to a proportional loading process can be realistically interpreted as fully

holonomic, namely as governed by Eqs. (39), where the load factor l is nondecreasing in time, lðtÞ with
_llP 0, so that Eqs. (39) becomes a parametric LCP.

The mechanical circumstances which may legitimate the above assumption are basically the inexistence
or negligibility of local unloading, as discussed in Section 5. Under this assumption, which reduces the

plastic model to a nonlinear-elastic one, consider now the following problems:
s ¼ max
l;k;u

flg; subject to : Lpkþ Lel6M ð46Þ

u ¼ NTðQe
D þQe

LlÞ � Bk� Y6 0; kP 0; uTk ¼ 0 ð47Þ

s ¼ max
l;k;u;u

flg; subject to : Lpkþ Lel6M ð48Þ

u ¼ NTECu� Ak� Y6 0; kP 0; uTk ¼ 0 ð49Þ
ŜSu� CTENk ¼ FLlþ FD ð50Þ
Clearly, the former problem is the equivalent condensation of the latter through the matrix Eqs. (20) and

(21). Obviously, in both problems u may be eliminated through its expressions in terms of u and k, with
possible (but not certain in general) computational savings.

From a mechanical standpoint, meaning and implications of the above problems are elucidated by the
remarks which follow.

(a) The plastic multipliers k, through Eq. (11) with E�1 ¼ 0, govern the plastic generalized strains p in crit-

ical sections and, hence, through a linear relation defined by some matrix Lp, every deformation addi-

tional to the linear elastic one (say Lel) due to live load. Therefore, if vector M defines suitable

maximum admissible thresholds on such deformations, the linear inequality in Eqs. (46) and (48) en-

force compliance with ductility limitations of sectional behaviour or/and serviceability requirements.

(b) At difference from static limit analysis (LA), Eq. (44), besides equilibrium and yield inequalities, also
the other constitutive relationships and compatibility are enforced. Therefore, deformations are ‘‘con-

trolled’’ in the sense that every feasible variable vector (i.e. obeying all optimization constraints) com-

pletely defines the/a statical situation under the load at amplification l, account taken of hardening

and/or softening behaviour of plastic hinges (H 6¼ 0). The maximum load factor s represents the safety
factor with respect to any undesirable structural event: not only plastic collapse, but also local fracture

or other occurrences related to excessive deformations. Hence, the above two maximization problems

avoid all the noticed limitations of classical LA. They can be interpreted as generalizations of LA, since

they reduce to LP Eq. (44) for H ¼ 0, M ! 1 and by removing compatibility among the constraints
(so that the equilibrium equations show up explicitly).

From a mathematical standpoint, the present maximization of the load factor l, Eqs. (46)–(47) and Eqs.

(48)–(50) (or minimization of �l ) are nonconvex and nonsmooth nonlinear programming problems and,

more specifically, optimizations under complementarity constraints. These special problems, under the

denomination of MPEC, at present are the subject of intensive research in applied mathematics, especially

in view of their importance for economical and management models, see e.g. Luo et al. (1996).
7. Computational aspects

In view of the multiplicity of problems formulated in what precedes within the unifying frameworks of
plastic hinge frame analysis and of mathematical programming, only orientative remarks and hints to the
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available literature are presented in this Section on nontraditional techniques for quantitative solution of

these problems.

(a) The LCP is the mathematical construct which consists of two linearly related, orthogonal, sign-

constrained unknown vectors and shows up in the rate relationships throughout plasticity theory. In this
paper it was shown to play a much wider, central, far reaching role as a consequence of constitutive piece-

wise-linearization (PWL): in fact, ‘‘exact’’ and stepwise holonomic analyses have been seen to be amenable

to repeated solutions of LCPs (Sections 4 and 5).

In Druckerian plasticity, with symmetric positive definite matrices (and, hence, with equivalence to

convex QP) classical algorithms can be employed efficiently. Typically, a robust method is the one devised

in 1965 by Lemke, based on a pivotal scheme and endowed with final termination.

In the presence of softening, which was seen to generally imply LCPs with nondefinite matrices and

equivalence to nonconvex QP, recourse is necessary to more general and recent algorithms such as ‘‘Path’’,
developed since 1994 (Ralph, 1994; Dirkse and Ferris, 1995; Ferris et al., 2001) for LCPs and nonlinear

complementarity problems (NLCP) as well. Basically, this algorithm generates from the NLCP or LCP a

‘‘normal equation’’ system (nonlinear, nonsmooth, with Euclidean projections) and solves this by an ite-

rative procedure which generalizes the classical line-search damped Newton method for nonlinear equa-

tions. In fact, this procedure consists of three stages in each iteration: first order approximation (trivial for

LCPs); path generation; damped pathsearching. Of course, the nonconvexity and nonsmoothness of the

equation residual norm to minimize imply peculiar difficulties, including the need for re-initialization in

order to avoid local minima. Developments of Path algorithms and relevant software seem to currently
proceed fast, fostered primarily by applications in economics and management.

A computational strategy alternative to specific LCP solvers such as Path, is recourse to general non-

linear programming algorithms (such as ‘‘interior point methods’’ or sequential QP, see e.g. Mor�ee and

Wright (1993); Vanderbei and Shanno (1999); Potra and Wright (2000)) applied to the equivalent non-

convex QPs formulated in Sections 4 and 5. In this strategy, two peculiar features, among others, are worth

noticing and exploiting to numerical solution purposes: the absolute minimum is zero; like in LP, the

solution belongs to a vertex of the feasible domain (the easy proof of this fact is here omitted for brevity).

(b) Softening hinges may cause branching in the structural response, i.e. bifurcations to capture at the
rate LCP level, as seen in Section 4. The enumerative, tree-search method of Judice and Mitra (1988)

guarantees to generate, in a finite number of steps, all solutions of a LCP, or to evidence that no solution

exists.

The following sketchy outline of this algorithm can explain its computational performance: with ref-

erence to the compact LCP in rates ( _kk and _uu), Eqs. (23), m being the total number of currently active yield

modes in all plastic hinges, a binary tree is generated with m levels, starting from the first pair of com-

plementary variables ( _kk1, _uu1) and branching at each of the 2m�1 nodes. In the strategy which leads to the

LCP solutions along all the m levels of the above tree, each move from one node to a neighbouring one
means the solution of a LP problem (precisely, the linearly constrained minimization of a k on one branch

and a �u on the other). Each LP solution gives guidance for skipping some descending branch (‘‘pruning’’)

and provides criteria for nonexistence of LCP solutions and for singling out all solutions when level m is

reached. The process is initialized at a vertex of the hyperpolyhedron defined in the k-space by the linear

inequalities in Eq. (23a). This vertex or ‘‘basic feasible vector’’ (which represents the first node of the binary

tree) is computed by LP, like in ‘‘phase one’’ of the classical Simplex method.

The exponential growth of the computing time with problem size (i.e. with y) is the well expected

consequence of the combinatorial nature of this method. Remedies might be heuristic to prune the tree and
use of traditional iterative nonlinear programming algorithms in the proximity (in the ‘‘attraction basin’’)

of a solution.

As for the possible overall instability threshold due to softening, the copositiveness of matrix B, Eq. (31),

as sufficient and necessary stability condition, can be checked by still laborious procedures, not to be
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discussed herein, see e.g. Cottle et al. (1992). However, its semidefiniteness as a sufficient only condition can

be assessed by consolidated techniques of linear algebra.

(c) The numerical solution of LP (44), or of (45), each one providing the solution to the other as well, can

be achieved by traditional finite-termination algorithms stemming from the Simplex method devised by
Dantzig and coworkers in the Forties. Alternative asymptotic iterative ‘‘interior point’’ algorithms have

been developed in the last few years through extensive research effort and are now available to effectively

solve large size problems, see e.g. Mor�ee and Wright (1993).

(d) In the particular context of perfect plasticity (H ¼ 0), the MPEC problem of limit and deformation

analysis combined was solved in Maier et al. (1979), by means of a Simplex algorithm for LP enhanced

through a ‘‘restricted basis’’ provision, namely: the maximization of the load factor l is carried out

(subject to the linear constraints only) by pivotal transformations like for LP, but by enforcing the

complementarity condition through the restriction that never both corresponding variables may simul-
taneously be basic at a positive level. This restriction is merely an additional rule to be obeyed in se-

lecting the pivot in each pivotal step of the LP solution process and, hence, can be easily accommodated

in the Simplex procedure (or in any of its improved versions) with finite termination at no further

computational cost. However, it was empirically found that this procedure may fail when the matrix of

the LCP is indefinite.

In the more general context of this paper (H 6¼ 0 and softening), recourse is made to solution

methods resulting from recent researches in mathematical programming, Luo et al. (1996) and Liu and

Zhang (2002).
The main source of computational difficulties in MPEC is represented by the nonlinear, nonsmooth

constraint uTk ¼ 0. Two ‘‘smoothing provisions’’ were proposed, based on substitution of this constraint:

(i) by uT kP � a, where a is a suitably chosen tolerance, in Ferris and Tin-Loi (2001); (ii) by fa ðu, kÞ ¼ 0,

fa being a smooth function depending on tolerance a, in Facchinei et al. (1999). In both cases comple-

mentarity is increasingly satisfied as a ! 0. After this preliminary stage (which turns out to be unnecessary

for small size problems like the one in the next Section), a popular robust nonlinear programming algo-

rithm (like e.g. Sequential Quadratic Programming) might be employed repeatedly for decreasing a until

convergence test is satisfied.
Clearly, penalization of the dot product uT k transferred from the constraints to the objective function

represents another methodological option to consider in large size problems. A MPEC arisen from the

minimum cost design of offshore pipelines (Giannessi et al., 1982) was solved by making use of binary

variables and branch-and-bound strategy, also apt to generate bounds bracketing the sought maximum.

Unfortunately, exponential growth of computing time is expected in view of the combinatorial nature of the

procedure.

(e) Three-dimensional frames may require to account for interactions of several generalized stresses in

critical sections (e.g. two bending moments, axial force and torsional moment). The generation of a PWL
model in more that two dimensional space may be made computationally simpler by recourse to ap-

proaches recently proposed and successfully employed for materials (Anderheggen et al., 2000; Bolzon

et al., 2002; Ben-Tal and Nemirovski, 2001). When in a PWL model the (linear) yield functions are

defined and matrix H is qualitatively selected, the hardening/softening parameters can be identified on the

basis of experimental data and/or data generated by means of the original nonPWL model (cf. Bolzon

et al., 2002).

As for the large number of yield modes usually implied by the PWL modelling of multidimensional

plastic hinges, significant computational savings can be achieved by the following ‘‘sifting’’ technique: (a) in
view of the assumed load proportionality, a single linear elastic analysis provides estimates ~uui of the ith
yield functions; (b) if ~uui is below a suitable (negative) threshold, the ith mode is removed from a trial

computation; (c) this mode is re-inserted in an iterated computation if it turns out to be activated despite

the opposite conjecture in (b).



7236 G. Cocchetti, G. Maier / International Journal of Solids and Structures 40 (2003) 7219–7244
8. Representative special cases and numerical tests

8.1. Representative plastic hinge models

Fig. 3a shows a typical PWL relationship between bending moment Q and rotation q (a single com-

ponent: c ¼ 1). It involves y ¼ 6 yielding modes (three for positive and three for negative bending), defined

by the following six parameters (i ¼ 1,2): ultimate moment Mui; rotation at the end of the perfectly plastic

stage (‘‘breakpoint’’) #bi; ‘‘critical’’ rotation #ci at vanishing moment.

The interactions between yield modes (to be quantified by means of off-diagonal entries in hardening/

softening matrix H, Section 2) are here limited to shrinking of flexural strength in the third quadrant

(visualized by dashed lines) due to plastic deformations in the first one, and viceversa.

The analytical description of the above PWL plastic hinge model in the general format of Section 2,
Eq. (2), (and with the symbols introduced there) reads:
Fig. 3.

depend
ð51Þ

_qq ¼ N _kk; where N ¼ f1; 0; 0;�1; 0; 0g ð52Þ

The hardening/softening matrix H contains six parameters, to identify through experimental data and

inverse analysis. Parameters h1 and h2 (both negative) can be interpreted as measures of the slope of the

relevant softening branches: hi ¼ Mui=ð#bi � #ci), i ¼ 1; 2. Parameters a,b,c and d govern the assumed

coupling between sagging and hugging flexural deformations.

For an easy understanding of the behaviour described by the above model, let us consider a monotonic

growth of q from zero (so that _kk4 ¼ _kk5 ¼ _kk6 ¼ 0) and the first three yield functions, namely:
u1 ¼ Q� h1k2 þ h1k3 �Mu1 ð53Þ
Q
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(a) Plastic hinge PWL model (bending moment versus rotation). (b) The function f (defined by Eq. (59)) which governs the

ence of the peak moment on the yield processes.
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u2 ¼ �h1k1 þ h1k2 þ h1#b1 ð54Þ

u3 ¼ �h1k2 þ h1k3 �Mu1 ð55Þ

First, when 0 < q < #b1 and, hence, u1 ¼ Q�Mu1 ¼ 0, u2 < 0 and u3 < 0 (perfectly plastic stage), plastic

multiplier k1ð¼ qÞ increases until k1 ¼ #b1 and u2 ¼ 0.

Subsequently, both modes 1 and 2 are active (while u3 < 0) and, hence: Eq. (54), with u2 ¼ 0 and k1 ¼ q,
implies that k2 ¼ q� #b1; Eq. (53) with u1 ¼ 0, k3 ¼ 0 and k1 ¼ q requires Q ¼ Mu1 þ h1k2, namely the

decay of flexural strength shown in Fig. 3a for #b1 < q < #c1.

Finally, for q > #c1 all three yield modes for sagging moment are active and, hence: from Eq. (55),

�h1ðk2 � k3Þ ¼ Mu1; whence Q ¼ 0 from Eq. (53).
The assumed particular coupling between positive and negative bending, is defined by parameters b and

d through the yield functions (with k4 ¼ k5 ¼ k6 ¼ 0 along the considered q path):
u4 ¼ �Q� bh2k2 þ bh2k3 þMu2 ð56Þ

u5 ¼ �dh2k1 þ dh2k2 � h2#b2 ð57Þ

u6 ¼ �bh2k2 þ bh2k3 þMu2 ð58Þ

Eq. (56) evidences the damage in terms of reduction (from Y4 ¼ �Mu2) of hogging flexural strength due to

sagging plastic rotation q > 0: parameters b and d are seen to control this effect, visualized by the dashed

lines in Fig. 3a (unrealistically, no such damage for b ¼ d ¼ 0).

Clearly, parameters a and c play for _qq < 0 the same role as b and d for _qq > 0. A more general and
versatile representation of coupling among yield modes may be achieved by placing further parameters

instead of zeros in matrix H, Eq. (51a).

Consider the following specialization: Mu1 ¼ �Mu2 ¼ Mu, #b1 ¼ �#b2 ¼ #b, #c1 ¼ �#c2 ¼ #c,

h1 ¼ h2 ¼ h, a ¼ b ¼ c ¼ d ¼ 1. These constraints which reduce to 3 (from 10) the available parameters in

the plastic hinge model Eqs. (51) and (52), induce a symmetry between positive and negative bending

(clearly unsuitable e.g. for usual reinforced concrete beams). In this case, yield functions u2 and u3 become

identical to u5 and u6, respectively, (hence, are denoted by u2;5 and u3;6) and the sums k2 þ k5 � k2;5 and

k3 þ k6 � k3;6 operate the damage (instead of the ki individually). Therefore, the model can be given the
following simplified formulation (to be used in Section 8.2):
u1 ¼ Q� f ðkÞMu 6 0

u4 ¼ �Q� f ðkÞMu 6 0

u2;5 ¼ �hk1 � hk4 þ hk2;5 þ h#b 6 0

u3;6 ¼ �f ðkÞMu 6 0

;

8>><
>>: where : f ðkÞ ¼ 1� k2;5 � k3;6

#c � #b

ð59Þ

; Y ¼

Mu

Mu

�h#b

Mu

8>><
>>:

9>>=
>>; ð60Þ

_qq ¼ N _kk; where N ¼ f1;�1; 0; 0g ð61Þ

The graph of Fig. 3b illustrates the behaviour of function f ðkÞ involved in Eq. (59).

The PWL plastic-hinge model schematically illustrated in Fig. 2 is characterized by interaction between

axial force Q1 and bending moment Q2ðc ¼ 2), with y ¼ 10 yield modes. Of these modes, eight correspond
to the sides of the octagonal domain (each endowed with a normal unit vector N1; . . ., N8, Fig. 2). Modes 9

and 10 control homothetic shrinking due to softening of the strength polygon, the latter arresting the
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inward motion of each side. These modes are ‘‘hidden’’ since they cannot be visualized in the Q-space of

Fig. 2, where dashed lines schematically evidence hardening (or softening) and mode interaction in the

model. An analytical description of this model with homothetic shrinking can be expressed as follows:
Fig. 4.

elemen
ui ¼ NT
i

Q1

Q2

� �
� gðkÞYi 6 0 i ¼ 1; . . . ; 8 ð62Þ
u9 ¼
X8

i¼1

wiki � k9 � 16 0; u10 ¼ �gðkÞ6 0 ð63Þ
having set:
gðkÞ ¼ 1� k9 � k10
x� 1

ð64Þ
In inequalities (62)–(64), there are 25 available parameters: 16, namely Yi and Niði ¼ 1; . . . ; 8), define the

onset of softening; 9, namely x and ‘‘weights’’ wi, are related to the critical kinematic quantities (like #ci in

Fig. 3a).
Plane frame for illustrative examples: (a) geometry and loads; (b)–(d) space discretization by plastic hinges and elastic beam

ts.
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8.2. Illustrative example

The plane frame considered in order to test the analysis methods dealt with in what precedes is depicted

in Fig. 4 as for geometry (H ¼ 3 m; L ¼ 4 m), reference loading (F ¼ 100 kN) and FE modelling. The
adopted space discretization is as follows: n ¼ 5 critical sections; six elastic, cubic interpolation FEs, the

first and the third of which are shown in Fig. 4b and d, each one with six nodal displacements and rotations

(v1; . . . ; v6) from which three ‘‘natural’’ generalized strains can be deduced, namely: elongation q1 ¼ v4 � v1;
end rotations with respect to the axis q2 ¼ v3 � ðv5 � v2Þ=L; q3 ¼ v6 � ðv5 � v2Þ=L. Fig. 4c illustrates the

assemblage of beam FE and critical sections and the governing d.o.f. u1; . . . ; u20.
The adopted model for critical sections is described by Fig. 3 with the parameters: Mu1 ¼ �Mu2 ¼ 236:8

kN m, #b1 ¼ �#b2 ¼ 1:362� 10�3 rad, for Sections 1 and 5 at the column bottoms and 3 for the beam, Fig.

4a;Mu1 ¼ �Mu2 ¼ 420:7 kN m, #b1 ¼ �#b2 ¼ 9:103� 10�4 rad, for the column top Sections 2 and 4. For all
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Fig. 5. Responses (in terms of horizontal displacement u1, see Fig. 4c) to proportionally varying loads, of the frame described in Fig. 4

and endowed with the plastic hinge model of Fig. 3a, for diverse slopes of the softening branch, namely for diverse ratios (1 i.e. perfect

plasticity, 100, 15, 5) between critical, #c, and breaking point, #b, rotation. Displacements in deformed configurations are represented

in a scale 30 times larger than that for frame lengths. The marks d, �, � denote activation of yield modes in the model of Fig. 3a,

namely: perfect plasticity (d for _kk1 > 0 or _kk4 > 0Þ softening (� for _kk2 > 0 or _kk5 > 0Þ, free rotation (� for _kk3 > 0 or _kk6 > 0Þ; ‘‘rev.’’
means reversed rotation). Circled dots mark the attainment of failure rotation #u ¼ 10#b.
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sections the rotation #ui ¼ 10#bi is assumed as ultimate rotation corresponding to local failure. The elastic

axial and flexural stiffnesses are: 1953 MN, 33.99 MNm2, respectively, in upper column FEs 1 and 2; 2740

MN, 79.31 MNm2, respectively, in the other FEs (3–6).

The carrying capacity of the above portal frame in perfect plasticity (H ¼ 0) is defined by the load factor
sLA ¼ 3:857 according to (perfectly plastic) limit analysis, Eqs. (44) or (45). This value results also from

‘‘exact’’ analysis (Section 4) by setting #c=#b ¼ 1.

The ‘‘exact’’ step-by-step analysis in the sense of Section 4 leads to the responses visualized in Fig. 5, for

increasing softening characterized by the ratios #c=#b ¼ 100, 15, 5 (by taking this ratio to infinity, the

traditional perfect plastic hinge model is recovered). The deformed configurations at some meaningful

stages are schematically shown. For #c=#b ¼ 5, Fig. 5d, a bifurcation is found to occur at the (second peak)

load ~ll ¼ 2:644 with u1 ¼ 13:98 mm and with zero moment in hinge 4: starting from this (peak) situation,

for decreasing loads ( _ll < 0), there are two solutions (one with plastic rotations in hinges 3 and 4, another in
hinge 4 only); no solution for _ll > 0.

Fig. 6 visualizes the results of a parametric study carried out for varying softening branches (Fig. 3),

namely by assuming #c=#b ¼ 5, 15, 100 and #c=#b ¼ 1 (limit analysis) for all plastic hinges. The corre-

sponding peak load factors turn out to be lM ¼ 2:668, 3.225, 3.764 and 3.857, respectively, and are indi-

cated by stars.

The present numerical results have been obtained by ‘‘exact’’ integration using for the LCP solutions the

enumerative method (Judice and Mitra, 1988) mentioned in Section 7, in view of expected bifurcations and

the small size of the problems.
The very same peak load factors lM have been found through the combined limit and deformative

analysis (Section 6) in its condensed formulation, Eqs. (46) and (47). The relevant MPEC problem was

numerically solved by sequential quadratic programming, without smoothing provisions in view of the

small number of unknowns (20 pairs of complementary variables, k and u, besides factor l).
The stability tests, formulated in Section 4.3 as optional part of the exact time integration method, if

applied to the present example give rise to the following remarks.

(a) Although the hardening/softening matrices H, Eq. (60a), are not symmetric, their submatrices involved
in the LCP in rates, Eqs. (23), are symmetric;
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(b) The sufficient and necessary stability condition Eq. (31) becomes only sufficient without sign constraints

Eq. (31b) and, in view of (a), can be used by merely computing the minimum (real) eigenvalue, say nmin,

of matrices B0, see Eqs. (23) and (31). Fig. 7 visualizes the degradation of eigenvalues nmin versus the

steps along the exact step-by-step LCP analyses of the frame described by Figs. 3 and 4, for the four

cases of softening #c=#b already considered in Figs. 5 and 6.
9. Closing remarks

The results presented in this paper can be summarized as follows.

(a) PWL rigid-plastic and elastic–plastic mathematical models can be formulated in terms of LCP and are

apt to describe in generalized variables (bending moment, axial force . . .) the plastic hinge hardening/

softening behaviour in critical sections of beams and frames.

(b) Quasi-static overall analyses of frames modelled as an aggregate of linear-elastic beam finite elements
and PWL critical sections, turn out to be centered on LCP or equivalent QP problems, which generally

become nonconvex in the presence of softening behaviours in the hinges. The overall frame analyses

include: ‘‘exact’’ time-stepping computation as a sequence of LCPs in rates; stepwise holonomic ana-

lysis with preselected loading steps; fully holonomic, single step analyses.

(c) Possible bifurcations and instability thresholds due to softening can be captured by special computa-

tional provisions concerning LCP in rates, specifically enumerative methods and copositiveness tests

on a matrix.

(d) The evaluation of the safety factor with respect to, as alternatives, either plastic collapse or load peak or
excessive deformations (local fracture, unserviceability) can be formulated and numerically solved as a

maximization of the load factor under linear complementarity constraints, i.e. as a special case of

MPEC. Such formulation can be interpreted as a generalization of the static approach of classical limit

analysis by LP, with drastic reduction of the limitations intrinsic in it.

(e) Each structural analysis problem discussed in the paper in view of its numerical solution, has been re-

lated to ad hoc algorithms recently developed in mathematical programming. This is a growing area of

applied mathematics which here turns out to play a unifying and beneficial role in the present and re-

lated areas of engineering mechanics of structures.



7242 G. Cocchetti, G. Maier / International Journal of Solids and Structures 40 (2003) 7219–7244
Besides the conceptual and computational advantages pointed out in this paper, PWL models entail two

disadvantages: (i) the computing burden and inaccuracies implicit in any PWL approximation; (ii) the large

number of variables involved by the multiplicity of yield modes. Remedies have been envisaged in the paper

(Section 8), but implementations and numerical tests will be dealt with elsewhere.
When the number of complementary variables becomes large, as usual in engineering situations, the

general (nondefinite) LCP and MPEC formulated herein require a selective study and implementation (to

be carried out elsewhere) of recently devised algorithms.

Extensions of the present results to locking behaviour at critical sections (suitable to interpret, e.g.,

semirigid joints in steel frames) and to second order geometrical effects (so called P-d effects) are

straightforward. Extensions to dynamics and to large configuration changes are issues of current research.
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